If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9w^2-14w=0
a = 9; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·9·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*9}=\frac{0}{18} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*9}=\frac{28}{18} =1+5/9 $
| 3.8(v+3.4)-6.8(-4.8-2v)=-41.44 | | 4j−10=6 | | 16=-6u+2(u-4) | | 4x+2(x-5=3(2x-4) | | e+e+5=5e | | 2(n-9)=3(n+7) | | y/5-3+3=3+3 | | 9(7x-3)=37-(5-4x) | | 12w-7w-4w+4w=15 | | 14t-10t+2=10 | | 9m-16=-52 | | 2(a-7)+7(a-4)=-69 | | u/5+10=33 | | 7c-42=56 | | 18.45=x+6.50 | | 14q-10q+2=20 | | y/5-12=29 | | w^2+18w=-17 | | YxY+5=5Y | | 14q+-8q=-12 | | 9z-5z-z-1=20 | | 6(n+2)=84 | | 5x-24=3 | | -9/3=-1/2g | | -15n+18n-3=15 | | 4u-13=55 | | w^2+18w+17=0 | | 14q+8q=-12 | | 7q-7q+3q=9 | | 56=8(j-88) | | 6(4-6b)-2(2-4b)=48 | | -2(3t-2)+4t=7t-4 |